Transferts thermiques avec changement d'état liquide-vapeur

Ébullition des liquides purs

Ébullition en vase

Expérience de Nukiyama

Nukiyama's experiment

Ébullition en vase

Expérience de Nukiyama

Allure générale de la courbe de Nukiyama

Ébullition en vase

Expérience de Nukiyama

Ébullition de l'eau à pression atmosphérique sur une plaque chauffante horizontale.

- AC ébullition nucléée
- CD ébullition de transition
- DE ébullition en film

Courbe de Nukiyama

Expérience de Nukiyama

Ebullition nucléée à bulles isolées (pour une plaque horizontale)

Ebullition à poches ou colonnes de vapeur (cylindre)

3.75 cm length of 0.164 cm diam. wire in benzene

at earth-normal gravity. $q=0.35\times106$ W/m2

Expérience de Nukiyama

Ebullition de transition

Two views of transitional boiling in acetone on a 0.32 cm diam. tube.

Expérience de Nukiyama

Ebullition en film ou pelliculaire

Film boiling of acetone on a 22 gage wire at earth-normal gravity. The true width of this image is 3.48 cm.

Convection naturelle en phase liquide

•Cylindre horizontal

Pour un cylindre chauffant horizontal de diamètre D baigné par un liquide, le coefficient d'échange de chaleur h en convection naturelle peut être déterminé à partir de la corrélation de Churchill et Chu (1975) :

$$Nu_{D,l} = \left\{ 0.6 + \frac{0.387 * Ra_D^{1/6}}{\left[1 + \left(\frac{0.559}{Pr_l}\right)^{9/16}\right]^{\frac{8}{27}}} \right\}^2 \qquad \text{pour } 10^{-5} < Ra_D < 10^{12}$$

•Plaque horizontale

Pour une plaque chauffante horizontale de longueur caractéristique L surmontée d'un liquide, le

coefficient d'échange de chaleur en convection naturelle peut être calculé à partir des corrélations :

L'indice L indique la longueur caractéristique à introduire dans les groupements : L = A/P avec A aire de la plaque chauffante et P périmètre de la plaque chauffante.

Démarrage de l'ébullition nucléée

Il faut une certaine surchauffe pour qu'apparaissent les bulles de vapeur

$$\Delta T_{sat} = T_p - T_{sat} = \frac{2\sigma T_{sat}}{r_{cav}\ell\rho_v}$$

Plus T_p **7**, plus la nucléation intéresse des sites de petits rayons.

Substance	Temperature Range (°C)	σ (mN/m)	$\sigma = a - bT$ (°C)	
			a(mN/m)	$b \pmod{m^{\circ}C}$
Acetone	25 to 50		26.26	0.112
Ammonia	-70	42.39		
	-60	40.25		
	-50	37.91		
t an flam a	-40	35.38	44.00	0.1005
Anume	15 16 90	DO D3	44.83	0.1085
Benzene	20	30.21		
	50	24.96		
	70	22.40		
Butyl alcohol	10 to 100		27.18	0.08983
Carbon tetrachloride	15 to 105		29,49	0.1224
Cyclohexanol	20 to 100		35.33	0.0966
Ethyl alcohol	10 to 100		24.05	0.0832
Ethylene glycol	20 to 140		50.21	0.089
Hydrogen	-258	2.80		
	-255	2.29		
	-253	1.95		
Isopropyl alcohol	10 to 100		22.90	0.0789
Mercury	5 to 200		490.6	0.2049
Methane	90 100	18.877 16.328		
	115	12.371		
Methyl alcohol	10 to 60		24.00	0.0773
Naphthalene	100 to 200		42.84	0.1107
Nicotine	-40 to 90		41.07	0.1112
Nitrogen	-195 to -183		26.42	0.2265
Octane	10 to 120		23.52	0.09509
Oxygen	-202 to -184		-33.72	-0.2561
Pentane	10 to 30		18.25	0.11021
Toluene	10 to 100		30.90	0.1189
Water	10 to 100		75.83	0.1477
Substance	Temperature Range (°C)	$\sigma = \sigma_o \left[1 - T\left(\mathbf{K} \right) / \mathbf{T} \right]^n$		
		$\sigma_o~({ m mN/m})$	T_c (K)	n
Carbon dioxide	-56 to 31	75.00	304.26	1.25
CFC-12 (R12) [9.5]	-148 to 112	56.52	385.01	1.27
HCFC-22 (R22) [9.5]	-158 to 96	61.23	369.32	1.23
HEC-134a (R134a) [9 6]	-30 to 101	59.69	374.18	1.266
Enomene IO 7	$172 \approx 0.0$	EDID	200.05	1.040
rrobane [a.7]	-173 10 90	22.12	-08.80	1.242

Table 9.1 Surface tension of various substances from the collection of Jasper $[9.4]^a$ and other sources.

^a The function $\sigma = \sigma(T)$ is not really linear, but Jasper was able to linearize it over modest ranges of temperature [e.g., compare the water equation above with eqn. (9.2a)].

10

Ébullition nucléée

Le coefficient d'échange de chaleur est nettement plus élevé en ébullition nucléée (AC) qu'en convection naturelle (OA).

Cela s'explique par l'effet de pompage thermique provoqué par l'ascension des bulles

Ébullition nucléée

Détermination de h :

Corrélation de Rohsenow

$$\frac{c_{l}(T_{p} - T_{sat})}{\ell} = C_{sf} \left[\frac{q}{\mu_{l}\ell} \sqrt{\frac{\sigma}{g(\rho_{l} - \rho_{v})}} \right]^{0.33} \left(\frac{\mu_{l}c_{l}}{k_{l}} \right)^{s}$$

s = 1 pour l'eau et s = 1,7 pour les autres fluides.

Le coefficient C_{sf} dépend du couple liquide-paroi et varie de 0,003 à 0,015. Il est recommandé de faire des expériences afin de déterminer la bonne valeur de C_{sf} . En l'absence de résultats expérimentaux disponibles, on prendra $C_{sf} = 0,013$ comme première estimation.

Corrélation de Cooper

$$h = \frac{q}{(T_p - T_{sat})} = 40P_R^{0.12 - \lg \epsilon} (-\lg P_R)^{-0.55} M^{-0.5} q^{\frac{2}{3}}$$

Crise d'ébullition

La crise d'ébullition correspond à la disparition de tout contact entre le liquide et l'élément chauffant

Crise d'ébullition

Détermination du flux thermique maximal •Plaque horizontale

$$q_{c} = 0.149 \, \ell \rho_{v}^{\frac{1}{2}} \big[\sigma \big(\rho_{l} - \rho_{v} \big) g \big]^{\frac{1}{4}}$$

Cette relation donne des résultats très corrects sous deux conditions :

- la plaque doit être limitée par des parois verticales ;

- la plus petite dimension L de la plaque doit être telle que : I

$$L > 32.6 \left[\frac{\sigma}{(\rho_{l} - \rho_{v})g}\right]^{\frac{1}{2}}$$

•Cylindre horizontal

$$q_{c} = \left[0.116 + 0.3 \exp(-3.44 r^{*1/2})\right] \ell \rho_{v}^{\frac{1}{2}} \left[\sigma(\rho_{1} - \rho_{v})g\right]^{\frac{1}{4}}$$

$$r^* = r \left[\frac{\sigma}{(\rho_l - \rho_v)g} \right]^{-\frac{1}{2}}$$

Ebullition en film Détermination du coefficient d'échange

•Plaque horizontale

$$h = 0.425 \left[\frac{k_v^3 \rho_v (\rho_l - \rho_v) g\ell'}{\mu_v (T_p - T_{sat}) (\lambda_c / 2\pi)} \right]^{\frac{1}{4}}$$

$$\ell' = \ell \left[1 + 0.4 \frac{c_{p,v} \left(T_p - T_{sat} \right)}{\ell} \right]$$

$$\lambda_{\rm c} = 2\pi \left[\frac{\sigma}{(\rho_{\rm l} - \rho_{\rm v})g} \right]^{1/2}$$

•Cylindre horizontal

Ebullition en film

limite inférieure

•Plaque horizontale

$$q_{\min} = 0.09 \ \ell \ \rho_v \left[\frac{\sigma(\rho_1 - \rho_v)g}{(\rho_1 + \rho_v)^2} \right]^{\frac{1}{4}}$$

•Cylindre horizontal

$$q_{\min} = 0.046 \left[\frac{18}{r^{*2} \left(2r^{*2} + 1 \right)} \right]^{\frac{1}{4}} \ell \rho_{v} \left[\frac{\sigma(\rho_{1} - \rho_{v})g}{\left(\rho_{1} + \rho_{v}\right)^{2}} \right]^{\frac{1}{4}}$$

$$\mathbf{r}^* = \mathbf{r} \left[\frac{\sigma}{(\rho_1 - \rho_v) g} \right]^{-\frac{1}{2}}$$

•Température minimale

Connaissant la valeur minimale de la densité de flux thermique, la corrélation donnant le coefficient d'échange de chaleur en ébullition en film permettra de calculer :

$$\Delta T_{\text{sat,min}} = T_{\text{p,min}} - T_{\text{sat}}$$

donc la température minimale de film stable $T_{p,min}$. Les valeurs de q_{min} et de $\Delta T_{sat,min}$ constituent les coordonnées du point dit de Leidenfrost.

Aucune modélisation adéquate

Effets paramétriques

Ebullition

Ebullition

Effets paramétriques

• Gaz dissous

La présence de gaz dissous entraîne la formation de bulles de dégazage avant l'apparition de l'ébullition nucléée. Le coefficient d'échange de chaleur s'en trouve augmenté

• Sous-saturation

Pas de modification dans la zone ébullition nuclée

$$\Delta T_{sub} = T_{sat} - T_{l,\infty}$$

Cependant

• Angle de contact

Si γ \nearrow , q_{c} \nearrow

• Accélération de la pesanteur

Pas d'influence en ébullition nucléée Dépendance des densités de flux thermique maximal et minimal et du flux thermique en ébullition en film

• Viscosité du liquide

Si v ↗, q_c ↗

